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A study is made of the stability of a viscous, incompressible fluid with a finite 
conductivity flowing between parallel planes in a parallel magnetic field. The 
general form of the magnetohydrodynamic stability equation is a sixth-order 
differential equation. The complete sixth-order differential equation is solved 
numerically as an eigenvalue problem. Stability curves are obtained for a range 
of values of the magnetic Reynolds number R, and the Alfv6n number A based 
on two-dimensional disturbances. It is found that the minimum critical Reynolds 
number is raised as R, increases for a given A2 and as A2 increases for a given 
R,, respectively. The stability curve closes and finally degenerates to a point 
which gives the critical value for R, or A2. Results obtained for two-dimensional 
disturbances are modified to take into account three-dimensional disturbances. 
Then the minimum critical Reynolds number where three-dimensional dis- 
turbances become apparent is obtained, below which two-dimensional dis- 
turbances are the most unstable. 

1. Introduction 
The stability of a viscous, electrically conducting fluid flow between parallel 

planes with a coplanar magnetic field was first investigated by Michael (1953) 
and Stuart (1954). Stuart (1954) considered the case when the magnetic Rey- 
nolds number R, is small. The general form of the stability equation could, for 
small R,, be reduced to a fourth-order differential equation in the velocity 
perturbation v alone. This equation differs only by the additional term q from 
the Om-Sommerfeld equation. This quantity q represents the stabilizing in- 
fluence. Following Stuart (1954), Velikhov (1959), Tarasov (1960) and Hains 
(1965) also examined the magnetohydrodynamic stability of plane Poiseuille 
flow with a parallel magnetic field. Hains (1965) used the stability equation for 
small R, given by Stuart (1954). However, in his investigation, the eigenvalue 
problem was solved using a parameter N defined as N = q/a, where a is the wave- 
number. Drazin (1960) examined some general aspects of the stabilizing influence 
for the parallel magnetic field with small R,. Wooler (1961) also studied the 
stability of a plane parallel flow for small R,. In  his case the magnetic field lies 
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in the plane of the fluid flow, but it is not parallel to the flow. He found that three- 
dimensional disturbances can be the most unstable ones for a magnetic field not 
parallel to the flow. 

The investigations on the stability of parallel flow with parallel magnetic field 
were based on the assumption that Squire’s (1933) theorem could be extended to 
this particular case. However, Hunt (1966) pointed out that, even when the 
magnetic field is parallel to the flow, three-dimensional disturbances are, in 
general, the most unstable. He showed for all values of R, ‘how results obtained 
for two-dimensional disturbances can be modified to take into account three- 
dimensional disturbances and thence draw some general conclusions about the 
stabilizing influence of a parallel magnetic field on a plane parallel flow ’. 

In our investigation, for a finite value of R,, the complete magnetohydro- 
dynamic stability equation (a sixth-order ordinary differential equation) was 
numerically solved as an eigenvalue problem. A special transformation has been 
made to build up an accurate difference equation for large values of R and finite 
values of R,. The solutions were first made for two-dimensional disturbances, 
and then the region stable for two-dimensional disturbances but unstable for 
three-dimensional disturbances has been found using the criterion demonstrated 
by Hunt (1966). 

2. Statement of the problem 
We consider the magnetohydrodynamic stability of an incompressible, viscous 

fluid of a finite conductivity flowing between parallel planes. It is assumed that 
flow under a pressure gradient is practically parallel to the perfectly conducting 
planes at a distance 2b, apart and that a uniform magnetic field is coplanar 
with the flow. 

The governing magnetohydrodynamic equations in dimensional form may be 

(2.1) 

B2,k = 0, (2.2) 

= -pTi+p*V*VT,kk+ -(BZ,kB$-BZ,iBZ), (2.3) 

written as * 
vk,k = O ,  

1 

P* 

where p* is the density of fluid, ,u* the permeability, g* the conductivity, v* the 
kinematic viscosity, p* the hydrodynamic pressure, v: the velocity vector and 
Bf the magnetic field vector. 

If the dimensional co-ordinate system is chosen such that the main flow and 
the magnetic field lies in the direction of x* and the steady velocity and field are 
functions of y* only, then the dimensionless form of the disturbances is given by 

q; = q i (y )  exp {i(m + pz) - icrct), (2.5) 

where qi(y) is the dimensionless complex amplitude function, a = a*b, and 
,8 = p*b, the dimensionless wave-numbers in the z = x*/b,  and z = z,/b, 
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directions respectively, t = t ,  Ui,*lb, the dimensionless time co-ordinate, U t  a 
characteristic velocity, c = c,/Uz = c,+ic, the dimensionless complex phase 
velocity; the basic flow is said to be stable, neutrally stable, or unstable according 
to ci < 0, ci = 0 or ci > 0. If equations (2.1), (2.2), (2.3) and (2.4) are perturbed 
in the manner of (2.5), then the linearized disturbance equations in dimensionless 
form, as were derived by Michael (1953) and Stuart (1954), become 

where y2 and v are the complex amplitude functions of the magnetic field vector 
and the velocity vector respectively in the direction of y-component, k = (a2 + /32)& 

the dimensionless wave-number, A = B,*/U,*(p,p,)& the Alfv6n number, 
R = U,*b,/v, the hydrodynamic Reynolds number, R, = p,r,b, U z  the 
magnetic Reynolds number and w = 1 - y2 the basic velocity profile. 

Eliminating v from (2.6) and (2.7) yields a sixth-order linear differential 
equation in terms of $ alone, which is the complete magnetohydrodynamic 
stability equation describing the motion of a disturbance travelling a t  an angle 
8 = cos-1 ( a / k )  to U,* and B;. If the angle 8 is equal to zero, this equation can be 
described by an equivalent two-dimensional one. Then, the equivalent two- 
dimensional disturbance equation in terms of $ alone may be written as 

d2w 

+- i ( (E -a2)2(w-c)$+ & ($ = 0. (2.8) 
aR dy2 

When the conducting fluid flows between two perfectly conducting walls, the 
boundary conditions at  the walls (y = k 1) can be written as 

$ = 0, (2.9) 

(2.10) 

(2.11) 

3. Eigenvalue problem 
In  (2.8) the solution to  @ can be separated into symmetrical and anti-sym- 

metrical modes. However, it is generally believed that antisymmetrical dis- 
turbances are more unstable than symmetrical ones; thus our analysis is limited 
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to the solution of an even function $(y). Therefore, it  is necessary to integrate 
over half the channel if the boundary conditions 

are satisfied at the channel axis (y = 0). 
Equation (2.8) is a homogeneous sixth-order ordinary differential equation 

with six homogeneous boundary conditions (2.9) to (3.3). The solution t o  the 
magnetohydrodynamic stability equation may be made by direct numerical 
integration of the equation, in which the value of c is the eigenvalue to be de- 
termined for assigned values of a, R, R, and A2. We are also interested in 
determining the critical Reynolds number R,, below which the basic flow is 
completely stable for all wave-numbers. By introducing a special transformation 

(3.4) 

the MHD stability equation (2.8) can be replaced by an accurate finite-difference 
equation in terms of g .  A homogeneous system of 1inea.r algebraic equations arising 
from the sixth-order differential equation with the relevant boundary con- 
ditions may be numerically solved by a direct Gaussian elimination as was done 
by Thomas (1953) in his investigation of the usual hydrodynamic stability of 
plane Poiseuille flow. However, in his case, only the fourth-order differential 
equation (Orr-Sommerfeld equation) was solved as an eigenvalue problem for 
assigned values of a and R. 

In  the present investigation, Gaussian elimination was made from the wall 
toward the centre of the channel. For assigned values of a, R, R, and A2, the 
eigenvalues c were guessed and successively approximated until no virtual 
changes in the eighth decimal place of c were forthcoming. 

4. Stability curves 
Squire (1933) demonstrated that, in the ordinary hydrodynamic theory, two- 

dimensional disturbances are more destabilizing than three-dimensional dis- 
turbances for two-dimensional parallel flows. However, Hunt (1966) demon- 
strated that three-dimensional disturbances can be the most unstable for a plane 
parallel flow with a parallel magnetic field based on a physical point of view. By 
virtue of the criterion used in his demonstration we can now show how the 
stability curves obtained for two-dimensional disturbances can be utilized to 
take account of three-dimensional disturbances. The computed eigenvalues c 
in the vicinity of the critical Reynolds numbers are listed in table 1. 

The neutral stability curves for various R, and A2 based on two-dimensional 
disturbances are shown in figures 1 and 2 .  The stability curve with constant 
amplification rates is shown in figure 3a. The amplification rates for the case 
R, = 1 in association with A2 = 0.05 are mapped for details in figure 3b, and 
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also those in the vicinity of the critical Reynolds number are enlarged as shown 
in figure 3 c. The critical Reynolds number for this case reads 

R, = (29~724)~ = 26,262 

with ct = 0.830 and the computed eigenvalue is c = 0.17654329 + 0.00000025i. 
Figures 4 and 5 can be drawn from the information obtained from figures 1 

and 2. I n  figure 4 the curve C was obtained by making use of the stability curves 

\R 
a\ 

0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 
1.05 
1.10 

0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 

0.60 
0.65 
0.70 
0.75 
0.80 
0.85 

0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 
1.05 

203 (8,000) 

0.193643 - 0.014342i 
0.201565 - 0.010035i 
0.209128 - 0-006566i 
0.216331 - 0.004028i 
0.223179 - 0.0024371 
0.229645 - 0.001781i 
0.235686 - 0-002041i 
0.241243 - 0.003180i 
0.246232 - 0.005156i 

283 (21,952) 
0.153681 - 0.014601i 
0.160520 - 0.009651i 
0.166919 - 0.005800i 
0.172978 - 0.003069i 
0.178720 - 0-0014381 
0.184121 - 0.000873i 
0.189117 -0.001333i 
0.193607 - 0.0027671 

363 (46,656) 
0.136526 - 0.007026i 
0-141954 - 0.0035681 
0.147133 - 0.001334i 
0.152059 - 0.000269i 
0.156664 - 0.000325i 
0.160832 - 0.001454i 

2Z3 (10,648) 
0.177944- 0.017135i 
0.186332- 0.0123031 
0.194242 - 0.008281i 
0.201723 - 0.0051931 
0.208801 - 0-003094i 
0.215479 - 0.001993i 
0.221729 - 0.001880i 
0.227497- 0.002735i 
0.232703 - 0.004521i 

R, = 1, A* = 0.01 

2Z3 (10,648) 

0.185603 - 0.009469i 
0.193120- 0.005555i 
0.200282 - 0.002608i 
0.207100 - 0.000659i 
0.213568 + 0.000316i 
0.219639 + 0.000319i 
0.225251 - 0.000608i 
0.230321 - 0.002442i 
0.234738 - 0.005114i 

R, = 1, A' = 0.05 
303 (27,000) 

0.148678 - 0.011381i 
0.155157 - 0.006829i 
0.161263 - 0-0034321 
0.167068 - 0.001177i 
0.172570 - 0.000040i 
0.177721 + 0-000025i 
0.182433 - 0.000942i 
0.186579 - 0.002891i 

R, = 1, A2 = 0.07 
383 (54,872) 

0.132679 - 0.0052591 
0.137923 - 0.00219Oi 
0.142944 - 0.000343i 
0.147710 + 0.000331i 
0.152132 - 0.000118i 
0.156069 - 0.00164% 

R, = 0.01, A2 = 0.05 
243 (13,824) 

0.171360- 0.012153i 
0.179265- 0.007647i 
0-186727 - 0.004088i 
0.193798 - 0.0015461 
0.200497 - 0.000053i 
0.206803 + 0.000412i 
0.212669 - 0.000143i 
0.218012 - 0.001686i 
0.222721 - 0.004182i 

243 (13,824) 

0.178363 - 0.005475i 
0.185513 - 0.002031i 
0.192333 + 0.000377i 
0.198826 +0.0017671 
0.204957 + 0.002139i 
0.210668 + 0.001516i 
0,215875 - 0.000063i 
0.220461 - 0.0025541 
0.224282 - 0.0058791 

323 (32,768) 
0.144018- 0.008640i 
0.150200 - 0.004500i 
0.156063 - 0.001543i 
0.161651 + 0-000253i 
0.166939 + 0.000930i 
0.171856 + 0.000519i 
0-176289 - 0.000934i 
0.180081 - 0.003369i 

403 (64,000) 
0.129085 - 0.003770i 
0.134173 - 0.001067i 
0.139052 -j- 0.000411i 
0.143669 +O.O00717i 
0.147911 -0.000109i 
0.151609 - 0.002023i 

263 (17,576) 
0-165286 - 0.0079951 
0.172769 - 0.003891i 
0.179858 - 0.000823i 
0.186597 +0*001167i 
0.192978 + 0.0020853 
0.198966 + 0-0019371 
0.204482 + 0.0007421 
0.209416 - 0.0014641 
0.213614- 0.004635i 

TABLE 1. Eigenvalues c for MHD stability curves based on 
two-dimensional disturbances 

(Integration interval h = 0-005) 
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FIGURE 1. Neutral stability curve for Aa = 0.05 baaed on two-dimensional disturbances. 
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FIGURE 2 .  Neutral stability curve for R, = 1 based on two-dimensional disturbances. 
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FIGURE 3a. Stability curve with amplification rates for R,  = 1 and A2 = 0.05. 

5 

4 

3 

2 

1 

- 3  

-4 

-5 

-6 

-7 

0.3 0.4 05 0.6 0.7 0.8 0.9 1 .o 
a 

FIGURE 3b .  Amplification rates for R, = 1 and A2 = 0.05. 
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FIGURE 3c .  Determination of the critical Reynolds number for R, = 1 and Ae = 0.05. 
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FIGURE 4. Critical Reynolds number R, ws. magnetic Reynolds number R, for A2 = 0.05. 
Region A,  unstable for all disturbances. Region B, stable for all disturbances. Region D, 
stable for two-dimemional disturbances, unstable for three-dimensional disturbances 
(shaded portion). 
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based on two-dimensional disturbances. For two-dimensional disturbances the 
stability curve closes as R, increa,ses and finally degenerates to a point for 
2.2 < R, < 2.3 with A 2  = 0.05, which means that the flow can be completely 
stabilized by only considering two-dimensional disturbances. A tangent is drawn 
from the origin to the curve C, which touches where R, = 1-9. The critical 
Reynolds numbers follow the curve C for R, < 1.9 and follow the straight line 

80 

60 

40 
Rt 

20 

0 
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1 I I 

0.05 0.10 0.15 
A2 

FIGURE 5 .  Critical Reynolds number R, vs. square of Alfvhn number A2 for R, = I. 
Region A ,  unstable for all disturbances. Region B, stable for all disturbances. Region D, 
stable for two-dimensional disturbances, unstable for three-dimensional disturbances 
(shaded portion). C, present result. C', Tarasov's result. 

for R, > 1-9, respectively (see Hunt (1966) for details). Therefore, results ob- 
tained for two-dimensional disturbances are significant only for R, < 1.9 with 
A2 = 0.05. Then, the effect of three-dimensional disturbances will become 
apparent at the value of R, = 1-9 for A2 = 0.05. Following the same criterion, 
we can also deduce that the effect of three-dimensional disturbances will become 
apparent a t  the value of A2 = 0.075 for R, = 1. 

5. Concluding remarks 
A study has been made of the stability of a viscous, incompressible fluid with a 

finite conductivity flowing between parallel planes under a parallel magnetic 
field. The general form of the stability equation for a finite magnetic Reynolds 
number R, is a sixth-order differential equation in terms of the magnetic field 
perturbation $ alone. For small R, the stability equation can be reduced to a 
fourth-order differential equation in terms of the velocity perturbation v alone. 
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For small R,  the neutral stability curves were obtained by Stuart (1954) and 
Hains (lQ65). The neutral stability curves for R, 5 1 and R, E a0 were obtained 
by Tarasov (1960) and Velikhov (1959), respectively. Both Velikhov (1959) and 
Tarasov (1960) employed an asymptotic method, in particular, Lin’s (1955) 
method by Velikhov and Tollmien’s (1936) method by Tarasov for the 
solution of the sixth-order differential equation. In  the present investigation 
the complete sixth-order differential equation was numerically solved as an 
eigenvalue problem without the usual assumptions pertaining to the magnitudes 
of the hydrodynamic Reynolds number and the magnetic Reynolds number. 
The result obtained by Tarasov is compared with the present result for R, = 1 
(see figure 5). Tarasov’s result presented in figure 5 has been obtained from the 
stability curve shown in his paper (1960). As can be seen in figure 5, the mini- 
mum critical Reynolds number R, rises as A2 increases. For R, = 1, the neutral 
stability curve becomes a point for 0.10 < A2 < 0.101 in the present investiga- 
tion, and for 0.12 < A2 < 0-13 in Tarasov’s study. Although the minimum 
critical Reynolds number shows some discrepancies, Tarasov’s result agrees 
qualitatively with the present one as far as the stabilizing influence is concerned. 
It is noticed that results obtained for small R, by Stuart (1954) and Hains (1965) 
also agree qualitatively with the present result regarding the stabilizing influence. 
However, it should be noted that all the solutions made in these investigations 
are based on the ground that Squire’s theorem can be extended to this case. 

In  the present case results obtained for two-dimensional disturbances have 
been modified to take into account three-dimensional disturbances using the 
criterion demonstrated by Hunt (1966). We have obtained the region where two- 
dimensional disturbances are completely stable, but three-dimensional disturb- 
ances are found to be the most unstable by this criterion (see figures 4 and 5). 
It might be very interesting to find the most unstable disturbances with some 
angle 8 with respect to the flow direction. However, it is quite laborious to 
investigate all the possible three-dimensional disturbances giving the most 
unstable mode. In  practice, this region can be excluded by limiting the critical 
Reynoldsnumber to  the point Q (R, = 1-9 for A2 = 0.05 in figure 4 and A2 = 0.075 
for R, = 1 in figure 5 ) .  For any combination of R, and A%, we can always find a 
point Q. This immediately eliminates the necessity for the investigation of three- 
dimensional disturbances. In  an experiment with a conducting fluid, an applied 
magnetic field can be constrained to give the proper combination of R, and A2. 
Then, the effect of three-dimensional disturbances will not be apparent according 
to the criterion. 
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